UNIVERSITY OF KWAZULU-NATAL, DURBAN WESTVILLE SUPPLEMENTARY EXAMINATION: NOVEMBER 2011

SCHOOL	: ENVIRONMENTAL SCIENCE
LEVEL	: III
MODULE	: ATMOSPHERIC SCIENCE
CODE	: ENVS318

DURATION: 3 HOURS

TOTAL MARKS: 300

INTERNAL EXAMINER: MR JP MULUMBA INTERNAL EXAMINER: PROF S GRAB UNIVERSITY OF WITWATERSRAND

INSTRUCTIONS: Answer THREE questions

1. a) Describe and explain three forms of attenuation of solar radiation in the atmosphere.

(50)

b) Using the First Law of Thermodynamics ($dh = c_p dT - dP/\rho$) and the hydrostatic equation ($dP/dz = -\rho g$), derive the dry adiabatic lapse rate of ~1°C per 100 m, and in doing so, define all terms. (Given: $g = 9.8 \text{ m.s}^{-2}$, and $c_{p=} 1004 \text{ J.Kg}^{-1}$.K⁻¹).

(20)

c) Using a well annotated diagram, explain the formation of lightning and thunder.

(30)

- 2. Define the forces listed below and explain their balances in geostrophic, gradient and cyclostrophic flow. Use well annotated diagrams where necessary.
 - Pressure gradient force
 - Coriolis force
 - Centrifugal force
 - Frictional force

(100)

3. Discuss the changes in geostrophic winds over space, time and surface type.

(100)

4. Using the concepts of radiation budget **and** surface energy budget, explain the energy surplus at the equator and deficit at the poles.

(100)